Human Detection in RGB Images

نویسندگان

  • Ish Rishabh
  • Arjun Satish
چکیده

Human detection is a challenging classification problem which has many potential applications including monitoring pedestrian junctions, young children in school and old people in hospitals, and several security, surveillance and civilian applications. Various approaches have been proposed to solve this problem. We have studied and implemented a scheme using Histogram of Oriented Gradients (HOG), as part of CS273A Machine Learning coursework for Winter 2008 quarter. The results are encouraging and we intend to improve our implementation so as to integrate it with another ongoing project at UCI. The INRIA Person dataset [9] was used for training and testing the classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological Exudate Detection in Retinal Images using PCA-based Optic Disc Removal

Diabetic retinopathy lesion detection such as exudate in fundus image of retina can lead to early diagnosis of the disease. Retinal image includes dark areas such as main blood vessels and retinal tissue and also bright areas such as optic disk, optical fibers and lesions e.g. exudate. In this paper, a multistage algorithm for the detection of exudate in foreground is proposed. The algorithm se...

متن کامل

A New Algorithm for Skin Lesion Border Detection in Dermoscopy Images

Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...

متن کامل

Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System

 Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...

متن کامل

Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System

 Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...

متن کامل

Face detection using a hybrid approach that combines HSV and RGB

The concept of face detection is very useful in many applications like face recognition, facial expression recognition, face tracking, facial feature extraction, gender classification, identification system, document control and access control, clustering, biometric science, human computer interaction (HCI) system, digital cosmetics and many more [1]. In literature [2][10] there are many well-k...

متن کامل

Human Skin Detection Using RGB, HSV and YCbCr Color Models

Human Skin detection deals with the recognition of skin-colored pixels and regions in a given image. Skin color is often used in human skin detection because it is invariant to orientation and size and is fast to process. A new human skin detection algorithm is proposed in this paper. The three main parameters for recognizing a skin pixel are RGB (Red, Green, Blue), HSV (Hue, Saturation, Value)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008